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Inertial coating of a fibre 
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Fibres can be coated by passing them through a solution. At low velocity, the thickness 
of the entrained film is given by the Landau law. For liquids of low viscosity, we discuss 
the high-speed withdrawal regimes which are of technological interest. We focus on 
inertial effects and geometrical limitations. New experimental data are presented and 
discussed by using dimensional arguments. Finally, a classification is proposed. 

1. Introduction 
Just after they are made, fibres (glass fibres or polymeric ones) are coated with a 

liquid in order to prevent them from breaking in further operations. The process simply 
consists in pulling them through a bath of liquid, so that they come out coated with 
a layer of liquid (see figure 1). The velocity at which the fibres are pulled is generally 
high (of the order of 10 m s-l). The question we address in this paper is the thickness 
of the entrained film : what are the parameters which determine the thickness and what 
is (or are) the entrainment law(s) as a function of these parameters? 

The problem of dynamic coating has principally concerned three kinds of geometry: 
withdrawal of a vertical plate out of an infinite reservoir (Morey 1940; Landau & 
Levich 1942; Derjaguin 1943), withdrawal of a fibre (Goucher & Ward 1922), and 
emptying of a capillary tube (Bretherton 1961). A particular case of planar withdrawal 
is the making of soap films from a surfactant solution (Mysels, Shinoda & Frankel 
1959; Lyklema, Scholten & Mysels 1960; Mysels & Cox 1962). We focus in this paper 
on fibre withdrawal. After a brief review of previous work (which concerns low- 
velocity regimes) and a presentation of our experimental set-up (§ 2), we present data 
which allow us to extend the description to situations where inertia must be considered. 
Three effects are successively discussed, in $53, 4 and 5.  

2. Visco-capillar entrainment of liquid : review and experiment 
2.1. Pioneering work: from Goucher & Ward to Landau & Levich 

The first paper on dynamic coating was published in 1922 where Goucher & Ward 
studied both plate and fibre coating. For small fibres (of radius b much smaller than 
the capillary length K - ~  = (y/pg)’”, where y is the surface tension of the liquid, 
p its specific mass and g the acceleration due to gravity), they noticed that the effect of 
gravity is negligible. The thickness e of the entrained film is determined by a balance 
between the viscous forces (favourable to the film) and the capillary forces (which tend 
to limit the thickness, since the fibre distorts the interface when drawn out). Thus they 
proposed to look for solutions of the form 

e = bf(Cu), (1) 
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FIGURE 1. Withdrawal of a fibre out of a bath of wetting liquid. Because of the liquid 
entrainment, the static meniscus (dashed line) is strained for a length 1. 

where Ca = r V / y  is the capillary number, 7 being the liquid viscosity and V the 
withdrawal velocity. Experimental data were obtained by coating metallic wires with 
melted beeswax and weighing them after solidification. They found that ACa) is an 
increasing function close to linearity. 

Twenty years later, Landau & Levich (1942) and Derjaguin (1943) proposed the first 
theory for the thickness of the film, for capillary numbers smaller than unity. Their 
description is based on figure 1 .  When pulling the fibre out of the bath, the static 
meniscus is deformed and a liquid film is entrained. As understood by Goucher & 
Ward, the thickness e of the film results from the competition between the viscous 
driving of the liquid by the solid and the capillary resistance of the surface to 
deformation. 

The region where the film forms is called the dynamic meniscus, of thickness of order 
e and length I ;  I is determined by balancing the pressure between the static meniscus 
(of zero curvature if b is smaller than the capillary length) and the dynamic meniscus. 
The Laplace pressure in the latter incorporates two terms of opposite signs: one due 
to the curvature of the fibre and one related to the second derivative of the profile. Thus 
the balance between the two menisci dimensionally is 

---- ye 0. b+e 1’ 
For thin films (e 4 b), it leads to 

I - (eb)’l2 (3 )  
In the (thin) film, the Laplace pressure is Ap = y/b .  Owing to this superpressure, a flow 
towards the reservoir takes place inside the dynamic meniscus. For small Reynolds 
numbers, this flow obeys the Poiseuille law 

Eliminating 1 in (4) by using (3) yields 

e - b(7 V/y)”l”. ( 5 )  
In their original paper, detailed calculations allowed Landau & Levich to calculate the 
numerical constant in (5) .  They found 

e = 1.34bCa2/l”. (6) 
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Equation (6) is sometimes referred to as the Bretherton law, since Bretherton showed 
that it also determines the thickness of the film left behind a drop inside a capillary 
tube, the difference being that b then represents the inner radius of the tube (Bretherton 
1961). 

2.2. Reported deviations from the Landau & Levich law 
The role of gravity. For a fibre withdrawn vertically, the film also drains because of 

gravity. The gravity force can be neglected if it remains much smaller than the capillary 
suction, i.e. pg 4 y / ( b  + e )  1. For capillary numbers smaller than unity, this condition 
is ensured if 

Bo 4 1 ,  

where Bo is the Bond number which compares capillary forces with gravity: 
Bo = b2/KP2. The capillary length is generally of the order of a millimetre, so that 
the condition of small Bond number is satisfied if the fibre radius is smaller than typic- 
ally 200 pm. The withdrawal of thick fibres (b  of order K-') has been investigated both 
theoretically (White & Tallmadge 1965) and experimentally (White & Tallmadge 
1966). 

For a fibre withdrawn horizontally, a Bond number much smaller than unity 
indicates that the film remains axisymmetric during the withdrawal (a necessary 
condition for establishing the Landau law). 

Large capillary numbers. Equation (6) is only valid at small capillary numbers. When 
Ca tends to unity, e is no longer negligible compared with b. Then a simple correction, 
first proposed by White & Tallmadge (1966), consists in replacing b by (b+e), so that 
the entrainment law (6) becomes 

1 .34bCa2I3 
1 - 1.34Ca213' e =  (7) 

This expression diverges for Ca = 0.64. At this point, the gradient of pressure between 
the film and the reservoir vanishes: in the absence of gravity, the reservoir is fully 
entrained by the fibre. 

The role of surfactants. Carroll & Lucassen (1973) made oil films by pulling a textile 
fibre through an oil-water interface. The thickness was measured by dissolving the film 
in another oil and doing a titration of the mixture by gravimetry. They were mainly 
interested in the influence of surfactants on the film thickness. They predicted and 
observed (for Ca varying from 2 x lop3 to lo-') that the presence of surfactants at the 
oil-water interface may thicken the film by a factor of order 2. Various attempts were 
made to explain this thickening. A recent discussion can be found for example in 
Ratulowski & Chang (1990). 

Very small capillary numbers. Quere, di Meglio & Brochard-Wyart (1989) were 
interested in the particular case of very slow withdrawal (Ca < lop6),  out of a wetting 
liquid. When the film is thinner than the range of van der Waals forces (of order 
100 nm), the disjoining pressure can thicken the film and the thickness becomes 
independent of the withdrawal velocity. Another cause of deviation at very small 
capillary number can be the surface roughness, as emphasized by Bretherton (1961) 
and shown by Chen (1986). 

Non-wettingJEuids. If the solid is slowly drawn out of bath of partially wetting liquid, 
it can come out dry (Sedev & Petrov 1992). Above a threshold in velocity (generally of 
order 1 cm s-l), viscous forces dominate capillary ones, and a Landau regime is 
recovered (Querk & Archer 1993). 
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FIGURE 2. Sketch of the experimental set-up. 

FIGURE 3. Mass of a drop of silicone oil of of viscosity 7 = 19 CP as a function of time. Between A 
and B, a nickel wire of radius b = 63.5 pm is drawn out of the drop at a velocity V = 3 cm s-l. The 
mass decreases linearly with time, indicating that a film of constant thickness is entrained by the fibre. 
Solving equation (8) yields a film thickness of 7.8 bm. 

2.3 .  Principle of the experiment and first results 
To determine the thickness of the liquid layer coating a fibre, the experimental set-up 
sketched in figure 2 was devised. The idea is to measure the mass of the reservoir as time 
passes. The liquid bath is a drop trapped inside a horizontal Teflon tube of length L 
and radius R (if not specified: L = 1.5 cm and R = 2 mm). The fibre is pulled by a 
motor at the required velocity (measured by a tachometer) and passes through the 
tube. The fibre radius always remains much smaller and the reservoir aperture (b < R). 

As soon as the fibre is moved, the mass m of the reservoir decreases since liquid is 
entrained by the fibre. An experimental recording is displayed in figure 3. The film 
thickness is deduced from such a plot by measuring the slope Am/At and solving the 
equation 

-1  Am 
e2+2eb = ~- npV At 

In the case of figure 3, the slope Am/A,t is a constant, which indicates that the film 
thickness is also a constant over time. The sensitivity of the measuring device means 
that the smallest thickness which can be measured by this method on a fibre of radius 
of order 50 pm is about 0.5 pm. 

Because discrepancies observed by previous authors were imputed to the roughness 
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FIGURE 4. Dimensionless thickness e /b  versus the capillary number Cu = r V / y .  Characteristics of the 
silicone oils used are: 1 ,  7 = 19 cP, y = 20.6 dyn cm-l; 2, = 96 cP, y = 20.9 dyn cm-'; 3, 7 = 
291 cP, y = 21.1 dyn cm-'; 4, r = 485 cP, y = 21.1 dyn cm-'; 5, 7 = 12250cP, y = 21.1 dyn cm-'. 
The withdrawal velocities range from 150 pm s-l to 5 cm s ~ l .  The fibre is a nickel wire of radius 
b = 63.5 pm, except for the point at the highest capillary number where it is a tungsten wire of radius 
b = 12.5 pm. The line repesents equation (7). 

of the solids and to the presence of contaminants in the liquid, we chose to do the first 
series of experiments with smooth metallic wires and silicone oils (not sensitive to 
contamination, because of their low surface tension). The roughness of the fibres was 
estimated by AFM and SEM observations to be of order 200 nm (much lower than the 
film thicknesses). 

In figure 4, the measured thickness divided by the fibre radius is presented as a 
function of the capillary number for different silicone oils. The characteristics of the 
oils are specified in the caption. The fibre is a nickel wire of radius b = 63.5 pm except 
for the point at the largest capillary number, obtained with a tungsten wire of radius 
b = 12.5 pm. The Bond numbers associated with these radii are respectively 2 x lod3 
and 7 x lop5. The withdrawal velocities range from 150 pm s-l to 5 cm s-'. The results 
are quite reproducible as indicated by the error bars displayed, except at the lowest 
capillary number where the limit of sensitivity of the mass measuring device is reached. 

Equation (7) is drawn in the same plot, and fits quite well the experimental data over 
three orders of magnitude in capillary number. The agreement is good even for Cu 
approaching 0.64, because the thickness e remains smaller than both the radius R of 
the reservoir and the capillary length K-' .  It was to satisfy these conditions that a 
smaller fibre was chosen for the point at largest Ca. 



224 A .  de Ryck and D.  Qukrk 

Thus for this model system (smooth fibres, viscous liquids of low surface tension and 
slow withdrawal), equation (7) is obeyed over a wide range of capillary numbers 
(4 x lo-’ < Ca < 0.5). The film thickness results from a balance between the viscous 
forces, which are responsible for the film, and the capillary forces, which tend to make 
it as thin as possible. Therefore, we call this regime visco-capillar. It should describe the 
fibre coating at capillary and Reynolds numbers smaller than unity for all wetting 
fluids. 

But in most practical applications, coating velocities are much higher and coating 
liquids are generally aqueous solutions instead of heavy oils. Thus we were interested 
in doing the same experiment at higher velocity with liquids of low viscosity (light 
silicone oil, pure water or water containing surfactants). 

3. The visco-inertial regime 
3.1. Experimental results 

When doing the experiment described in $2.3 with liquids of low viscosity, the capillary 
number can remain small even if the velocity is high (with pure water for example, a 
withdrawal velocity of 70 cm s-l corresponds to a capillary number of 0.01). Thus the 
data lie in the same interval of Ca as in $2.3 and can be directly compared with the 
results for oil. To reach higher velocities, the motor was changed. Three series of 
experiments were done : one with a light silicone oil (hexamethyldisiloxane of viscosity 
7 = 0.48 cP, surface tension y = 15.9 dyn cm-’ and specific mass p = 0.76 g cm-’), one 
with pure water (7 = 1 CP and y = 72.8 dyn cm-l) and the last one with two aqueous 
solutions of surfactant (in both cases: 7 = 1 CP and y = 37 dyn cm-l). Results with 
pure water were previously published for another fibre radius, showing the same effects 
as below (de Ryck & QuerC 1994). 

PureJEuids. In figure 5, the film thickness is plotted versus the capillary number for 
the light silicone oil and for pure water. The fibre is a nickel wire of radius b = 63.5 pm, 
giving respective Bond numbers 2 x lo-’ and 5 x lop4 (both much smaller than unity). 
The withdrawal velocity ranges from 20 to 76cms-l for the oil and from 30 to 
180 cm s-l for water. In the same figure, the Landau law (6) is drawn and compared 
with the data. 

For both liquids, the film thickness can be fitted by the Landau equation only at low 
velocity. Above a threshold Ca*, a serious discrepancy can be observed. The film 
thickness sharply rises with the capillary number: it increases about tenfold by simply 
doubling the velocity. A diverging behaviour was also encountered with viscous oils, 
but it was very different: in figure 4, it can be seen that the divergence was much 
smoother, and occurred at a capillary number of order 1, instead of 0.01 with pure 
water. Thus this effect is a new one and seems to be linked to the low viscosity of the 
fluids. 

Surfactant solutions. The same experiment was done with two aqueous solutions of 
sodium dodecyl sulphate (SDS) of concentration 20 g 1-1 (about eight times the critical 
micellar concentration, or c.m.c.) and 2.4 g 1-1 (the c.m.c.). The fibre is also a nickel 
wire of radius b = 63.5 pm (so that the Bond number is lo-’). The results are displayed 
in figure 6 and again compared with equation (6). As for pure liquids, two successive 
types of behaviour can be observed. 

At low capillary number (Ca < Ca*), the entrainment law is slightly different from 
a Landau regime: the film is thicker than predicted by a factor of order 2. As 
mentioned above, this effect was previously reported by Carroll & Lucassen (1973), 
and by ourselves (de Ryck & Quere 1993~). The thickening is due to the presence of 
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Ca 
FIGURE 5. Dimensionless thickness of films entrained by a nickel wire of radius b = 63.5 pm 
withdrawn from pure water (y = 72.8 dyn cm-’ and 7 = 1 cP; open squares) and from hexa- 
methyldisiloxane ( y  = 15.9 dyn cm-l and q = 0.48 cP; black squares) versus the capillary number. 
The dashed line represents (7). 

FIGURE 6. Film thickness divided by the fibre radius (b  = 63.5 pm) versus the capillary number for 
a nickel wire drawn out of a SDS solution of concentration 2.4 g 1-’ (black squares) or 20 g I-’ (open 
squares). The dashed line is the Landau law (6). 

surfactants. Because of the fibre movement, a gradient of surfactant concentration is 
generated in the dynamic meniscus. It induces a Marangoni flow from the region of low 
surface tension (the reservoir) to the region of high surface tension (the film), so that 
the film gets thicker. An important feature related to this effect is that the thickening 
factor cannot exceed 2.5 (Ratulowski & Chang 1990), and thus is much lower than 
observed in the ‘diverging’ part of the curve. 
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FIGURE 7. Dimensionless film thickness versus the capillary number. The films are drawn from pure 
water by a nickel wire of radius b = 63.5 pm (open squares) or by a tungsten wire of radius 
b = 12.5 pm (black squares). The dashed line represents (7). 

The second regime in figure 6 concerns higher capillary numbers (Ca > Ca*) and is 
similar to the one observed with pure liquids: above Ca*, the film thickness sharply 
rises. The threshold is the same for both surfactant solutions, and is slightly shifted 
towards a smaller capillary number when compared with that observed for pure water. 

EfSect of the radius. The way the threshold depends on the fibre radius was also 
studied. In figure 7, the film thickness for pure water is plotted versus Ca for two 
different radii. The first fibre is the nickel wire previously used (b  = 63.5 pm) while the 
second one is a molybdenum wire about five times thinner (b  = 12.5 pm). It can be seen 
that doing the same experiment with a much thinner fibre makes the threshold shift 
towards higher capillary numbers: Ca* roughly doubles for the thin fibre. 

3.2. The Weber number 
The increase in film thickness happens when doing experiments at high velocity. 
Moreover, it occurs even if the liquid contains surfactants, indicating that it is not a 
surface effect. Thus inertia was suspected to be responsible for this effect. 

The reason why inertia sharply thickens the film can be understood as follows. The 
liquid enters the dynamic meniscus at a velocity of order V, and there undergoes a 
gradient of Laplace pressure. If the kinetic energy of fluid (per unit volume) is larger 
than the capillary pressure, the latter can be neglected and nothing retains the liquid any 
longer: the thickness diverges. It is logical to introduce the Weber number W as a 
parameter measuring the importance of inertia. W is defined by comparing the 
dynamic pressure (of order p V 2 )  with the Laplace pressure (of order Y / b  when e 4 b) 
(Epikhin & Shkadow 1978): 

p V2b W=-. 
Y 

Values of W associated with the experiments can be calculated. In the previous section 
(visco-capillar entrainment), the maximum velocity was 5 cm s-l and so W was smaller 
than 0.01: inertia could indeed be neglected, a condition for satisfying the Landau 
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equation. For the experiments reported in this section, the situation is quite different. 
In figure 5 ,  the divergence occurs at around 80 cm s-l for the silicone oil and around 
140 cm s-' for water, which gives W of 1.9 and 1.7 respectively; similarly, we get for 
soapy water (figure 6) 115 cm s-l and for the thin fibre (figure 7) 260 cm s-l giving W 
of 2.3 and 1.2 respectively. These values are indicative, since the location of the 
divergence is rather inaccurate, but all are found to be of order unity. Similarly the 
value of W at the threshold of the thickness increase can be deduced from the data: in 
all the cases, W is found to be of order 0.1 there. Thus the discrepancy observed in 
figures 5-7 can be attributed to inertia. We call the anomalous behaviour above the 
Ca* the visco-inertial regime. 

3.3. Shape of the divergence: a dimensional analysis 
The scaling laws associated with the visco-inertial behaviour can finally be specified. 
The dimensional Navier-Stokes equation is 

F - y  +- 7v 
1 lb e2 ' (9) 

where 1 is the length of the dynamic meniscus. The signs in (9) must be stressed: most 
of the liquid entrained in the reservoir by viscosity bumps into the free surface, so that 
the Laplace pressure gradient and the convective term have opposite effects. Equation 
(9) can be rewritten in the form 

which looks like (4), if an effective pressure is taken a s p  = y / b - p V 2 ;  1 has still to be 
estimated. Using the same kind of arguments as in establishing (2) but taking into 
account inertia, we get (supposing e < b) 

Combining (10) and (11) yields an expression for the thickness: 

bCa2/3 e - -  
1-W' 

where the role of the Weber number is clearly emphasized. If W is small (i.e. at small 
velocity), (12) reduces to (6). As W reaches unity, the thickness diverges: the Laplace 
pressure is not efficient enough to oppose to the inertia of the fluid drawn by the fibre 
coming out of the reservoir. The finite velocity V* at which the film thickness diverges 
is dimensionally given by taking W = 1 : 

v* - (%ye 
Taking typical values for the different parameters ( y  = 30 dyn cm-', p = 1 g cm-3 and 
b =  50ym) leads to V* of order 1 ms-l, in agreement with the values observed 
experimentally. Moreover, the dimensional form of V* explains why it slightly depends 
on the nature of liquid (see figures 5 and 6). For example, Ca* varies as l / y l / ' ,  which 



228 

0.8 * 

0.6 . 
1.34 b Ca2'3 

e 
0.4 . 

0.2 - 

-t 

A .  de Ryck and D. Que're' 

B U  

D O  

0 .  
D O  

0 

0 

0 

0 

FIGURE 8. Landau thickness (6) or (7) divided by the experimental thickness versus the Weber W, for 
the data of figure 7 (open squares: b = 63.5 pm; black squares: b = 12.5 pm). The Weber number W 
is defined by comparing the kinetic energy per unit volume of the liquid with the Laplace pressure in 
the film ( W = p V 2 b / y ) .  

is consistent with the observation of a larger Cu* for the surfactant solution than for 
pure water. Also, the dependence on the fibre radius is predicted by (13) (Cu* varies 
as 1/3'/'), in good qualitative agreement with the experimental behaviour in figure 7. 

The shape of the divergence law (12) can be compared with the data. In figure 8, the 
Landau thickness divided by the experimental one (corresponding to the data of figure 
7) is plotted as a function of W instead of Cu. Decreasing lines are obtained, in rough 
agreement with (12): they intersect the x-axis around W = 1 and the y-axis around 1, 
as expected. Dispersion at large thickness mainly comes from the fact that for large e, 
b should be replaced by (3 + e )  in the definition of the Weber number. 

It must be finally noticed that the visco-inertial divergence should be observed only 
if it occurs at a capillary number smaller than 1, the value for which a smooth capillary 
divergence takes place (as seen above, in (7) and figure 4). Together with (13), it gives 
a condition for observing this regime. Written for example in terms of the viscosity, it 
reads 

7 < ( y W 2 .  

For typical values (given above), it implies a viscosity smaller than 40 CP (a condition 
fulfilled in this section and in most practical situations). 

3.4. Conclusion 
In spite of its approximate nature, the dimensional analysis gives a physical 
understanding of the visco-inertial regime in satisfactory agreement with the data. Of 
course, it must be complemented by more detailed calculations. Following Esmail & 
Hummel (1975) who first tried to incorporate inertia in the Landau problem of plate 
coating, several attempts were recently published (de Ryck & QuerC 19933; Koulago 
et ul. 1995) or are under current study (V. Shkadov & A. Koulago 1995, personal 
communication). Analytical expressions or numerical results were obtained, in good 
agreement with the data. The diverging behaviour was found, and shown to be specific 
to the fibre geometry. In the plate geometry, effects of inertia are much less spectacular 
(Soroka & Tallmadge 1971; Esmail & Hummel 1975) since they are dominated by 
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gravity. A small divergence should also exist (de Ryck & QuerC 1995) but reduced by 
gravity which makes the liquid flow down, and thus limits the thickness. 

The way the diverging regime ends has not yet been presented: we are now interested 
in what happens at still higher withdrawal velocities, which are closer to the industrial 
conditions of lubrication of polymeric and glass fibres where coating velocities are of 
order 10 m s-l. 

4. The boundary layer regime 
For liquids of low viscosity, we have seen in the previous section that the film 

thickness diverges, at a capillary number of order 0.01 for aqueous solutions. At first 
sight, a natural limitation for the divergence is the aperture of the reservoir (namely the 
radius R of the tube). Looking for an eventual saturation of the thickness, a much more 
interesting (i.e. more general) behaviour was found. 

4.1. The viscous boundary layer 
When the fibre passes through the reservoir, the surrounding liquid close to the fibre 
starts to move because of the liquid viscosity. The layer entrained is the so-called 
viscous boundary layer. Its thickness 6 grows dimensionally as (vt)”’, where t is the 
contact time between the solid and the liquid and v the kinematic viscosity (v = v/p).  
So at the exit of the reservoir, the thickness of the boundary layer is 

6 - ($y: 
where L is the length of the reservoir. At low velocity, S is large compared with the 
thickness of the entrained film, given by (6), (7) or even (12), and the arguments 
proposed in 53 can be used. But at high velocity, the boundary layer becomes thinner 
than the film thickness predicted by (12). Then, the quantity of liquid entrained by the 
solid is expected to be given by the flux of liquid due to the fibre displacement inside 
the reservoir. Hence only the viscous boundary layer goes with the fibre (e - S) and the 
thickness is simply given by 

e = a ( $ )  112 , 

where 01 is a numerical coefficient. To check this expression, two different experiments 
were done. 

4.2. Emptying of the reservoir 
We let the reservoir be emptied by the fibre passing through it. As the length L(t) of 
the reservoir decreases, the boundary layer gets thinner as time passes. But now, the 
film thickness should depend on L and vary as L(t)lj2 (equation (15)). In figure 9, the 
mass of the reservoir is plotted versus time for a nylon fibre of radius b = 110 Fm 
withdrawn at V = 1.6 m s-l out of a reservoir of water (radius R = 2 mm and initial 
length Lo = 5.1 cm). These parameters have been chosen to give a viscous boundary 
layer thinner than the film thickness calculated by (1 2) : the fibre is rather thick so that 
the divergence threshold is less than 1 m s-l. Thus the velocity is far in excess of V*, 
inside a purely inertial regime: the corresponding Weber number is 6. 

The new fact is that the curve m(t) is no longer linear (as it was in figure 3) but, 
rather, looks like a parabola. This is in agreement with the arguments given above: as 
time passes, the reservoir gets shorter and the film thinner. Supposing that e is given 
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FIGURE 9. Mass of the reservoir as a function of time. A: the motor is switched on and a nylon fibre 
(b  = 110 pm) is drawn out of pure water at a velocity V = 1.6 m s-l. B:  the reservoir is empty. 

by (15), we have: e - L112. Also, when the film is very thin (at the end of the 
experiment, close to the apex of the supposed parabola), we have e 4 b and thus by (8) 
dL/dt - - e  since the mass of the drop is simply proportional to its length. These two 
conditions quickly give L - t2, in agreement with figure 9. 

A precise fit of the experimental curve m(t) with that calculated assuming that the 
film thickness follows (15) can be done. As the tube is totally dried by the fibre (Teflon 
is not wetted by water so that there is no film remaining in the tube when the drop 
shortens), the mass is simply proportional to the length : 

m(t) = pnRZL(t). 

The loss of mass of the reservoir is given by (8). Supposing that the thickness is given 
by (15), equation (8) can be rewritten as a differential equation for the length of the 
drop : 

Setting 

equation (16) reduces to a simple linear equation: 

which can be easily solved. The length of the drop is obtained as a function of time: 

L(t) = T [ e n p ( & t ) - 1 ] ' ,  7" 

where the origin of time is chosen at the moment when the drop has disappeared 
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FIGURE 10. Length of a reservoir of pure water as a function of time. The reservoir is emptied by a 
nylon fibre of radius b = 110 pm. The black squares are the experimental data, and the line is the best 
fit with (18), giving a determination for the numerical constant a in (15). The fibre is withdrawn (a) 
at a velocity V = 1.9 m s-I  giving a = 0.9 and (b)  at V = 4.8 m s-l, giving a = 1.3. 

(L(0) = 0). Expanding (18) at short time gives the parabolic dependence which 
was mentioned above: L(t) = (a2yVb2/pR4) t 2 .  

Equation (18) fits the experimental curves quite well as can be seen in figure 10. 
Moreover, the fit allows us to determine the coefficient 01. In figure 11, a is plotted as 
a function of the velocity, for Vranging from 1.6 to 4.8 m s-’. The coefficient a is close 
to unity. It depends slightly on the velocity in the transition regime (where the thickness 
passes from the visco-inertial behaviour (equation (12)) to the boundary layer regime 
(1 5), but becomes constant at large velocity: then, we get a = 1.3 & 0.1. This value may 
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FIGURE 1 1. Value of coefficient a as a function of the withdrawal velocity. a is determined as indicated 
in figure 10. All the experiments are done with a nylon fibre of radius b = 110 pn drawn out of pure 
water. 

e 
b 
- 

2 

1 -  I 

0 

I 

I 

I I I 

0 0.02 0.04 0.06 0.08 

Ca 
FIGURE 12. Dimensionless thickness versus the capillary number, at a fixed reservoir length 
Lo = 3.5 cm (open squares) or Lo = 5.1 cm (black squares). The experiments are done with a nylon 
fibre of radius b = 110 pm drawn out of pure water. 

be compared with the one theoretically obtained in the case of a semi-space entrained 
by a plane. The flux (per unit width) is Q z 1.7 I / ( u ~ ) ~ / '  (Landau & Lifshitz 1959), which 
gives a of about 1.7. 

4.3. Thickness as a function of the velocity 
In the boundary layer regime, the film thickness for a fixed drop length is expected to 
decrease with the velocity, as l/V1/'. In figure 12, the reduced thickness e / b  has been 
plotted versus Ca. It corresponds to experiments done with a nylon fibre of radius 
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b = 110 pm drawn out of pure water with two different initial lengths for the reservoir: 
L, = 3.4 cm and 5.1 cm. The coating velocity ranges between 70 and 5 m s-’ (so that 
W varies from 1 to 40). For a given velocity, plots similar to figure 11 were obtained. 
The film thickness at a fixed reservoir length is simply deduced from the measurement 
of the slope dm/dt at the required length. 

Finally figure 12 summarizes all the regimes successively encountered : (i) in region 
I, the dashed line represents the Landau law (6); (ii) region I1 is the visco-inertial 
divergence described in 0 3 ; (iii) region 111 is the transition between the visco-inertial 
regime and the boundary layer regime. In this small region, the thickness roughly 
follows (15), but with a slight dependence of the coefficient 01 on V ;  (iv) finally, the 
graph gives prominence to the velocity dependence in the boundary layer regime 
(region IV). The two solid curves obey (1 5), with 01 = 1.1 for the two lengths employed. 
The numerical constant used for these fits is slightly smaller than above (where it was 
shown to tend to 1.3) but the way it is determined is less precise here. 

While the boundary layer regime seems to be established and qualitatively 
understood, detailed calculations remain to be done to predict the value of the 
coefficient a and the way it depends on the velocity in the transition regime. 

5. The particular case of long reservoirs 
We finally tried to investigate the transition regime between the divergence and the 

viscous boundary layer regime. A naive idea consisted in replacing the short reservoir 
(length of order 1 cm) by a much longer one (length of order 10 cm), so that the viscous 
boundary layer had more time to develop, even at large withdrawal velocities. But 
doing this led to unexpected results. 

The reservoir is still a Teflon tube (radius R = 2 mm) but much longer: L, = 30 cm. 
It is filled with pure water and emptied by making a nickel wire of radius b = 88.5 pm 
pass through it. Because of the bigger mass associated with the new length, the mass 
measuring device is changed. 

Direct observations reveal a new phenomenon. At low velocity (Ca < Ca*), nothing 
special happens and the Landau regime is followed. But if the velocity becomes larger 
than 50 cm s-l, the meniscus at the exit of the reservoir tube breaks and drops are 
expelled. Hence the recorded curve m(t) has a step shape, as shown in figure 13. Each 
step corresponds to the expulsion of a drop of radius r .  The step height gives 
r = 2.2 mm, (logically) showing that r is of order R, the aperture of the reservoir. 
Between two steps, the mass is not a constant but slowly decreases: the fibre entrains 
a film of thickness obeying (12). 

In this case, it is no longer possible to get an e( V )  curve from the weight experiment, 
because the fluid is removed both as a drop and as a film. Nevertheless, an ‘effective 
thickness’ is reported in figure 14, corresponding to the average flux Am/t  at the 
beginning of the experiment ( L  = Lo = 30 cm). These data are compared with those 
obtained with L, = 10 cm, for which such a drop-expelling behaviour was not 
observed. The line in the graph represents (15) with a = 1.3, which shows that when 
drops are expelled, the time-averaged flux is close to the boundary layer flux. 

Interpretation. The capillary force f, retaining the meniscus and anchoring the drop 
inside the horizontal tube is of order 

f, - YR. (19) 

The fluid set in motion by the fibre exerts a force f, on the meniscus which can be 
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FIGURE 13. Mass of a very long reservoir (Lo = 30 cm) filled with water as a function of time. The 
reservoir is emptied by a nickel wire (b  = 88.5 pm) pulled at V = 50 cm SS'. 

10-2 
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FIGURE 14. Dimensionless effective thickness (defined in the text) versus the capillary number. The 
fibre is a nickel wire ( b  = 88.5 pm) pulled out of pure water, for two different reservoir lengths: 
Lo = 10 cm (squares) or Lo = 30 cm (circles). The dotted line corresponds to the viscous 
boundary regime. 

written as a dynamic pressure (of order pV2)  times the area on which it acts, of order 
S2 ( L  is large and we have 6 + b). S is given by (14), which yields 

Iff, exceeds the capillary force, the meniscus twists (like an umbrella in the wind) and 
a drop is removed. By setting f, and f, to be equal, a criterion for the appearance of 
the drop regime is obtained: 

LCa - R.  (21) 
For R = 2mm and L = 30cm, (21) gives as a threshold Cu = 0.007 (or log 
Ca = -2.2), close to the experimental value observed in figure 14. 

For a given velocity V and aperture R, drop expulsion occurs if the reservoir is long 
enough, i.e. if its length is larger than L* = RCa-l. If a long reservoir (Lo > L*) is 
emptied by drawing a fibre out of it, drops are first expelled but the drop regime stops 

f ,  - 7VL. (20) 
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FIGURE 15. Critical length L* versus the velocity V, measured for water (black squares) and for 
hexamethyldisiloxane (open squares). The continuous lines correspond to ( 2  1). 

when L( t )  reaches L*, which can thus be directly observed. In this way, L* was 
determined as a function of the velocity for two different liquids: pure water and the 
light silicone oil described above (y  = 15.9 dyn cm-l and 7 = 0.48 cP). The results 
displayed in figure 15 show a quite good agreement with equation (21), though all the 
numerical coefficients have been neglected. 

6. Conclusion 
Different experiments on fibre coating have been presented. First, slow coating 

(corresponding to negligible Weber numbers) of thin smooth fibres by viscous oils was 
shown to obey the well-known Landau equation (6). This regime was referred to as 
visco-capillar, since the film thickness results from a balance between capillarity and 
viscosity. The special case of extremely slow coating, where long range forces must be 
taken into account, was not considered here. 

Then we were interested in describing coating by liquids of low viscosity (such as 
water) at higher velocity (about 1 m s-l). The measurements were shown to deviate 
tremendously from the Landau law, even if the capillary number remained negligible 
compared with unity (Ca < 0.05). Two successive regimes were found and discussed. 
First the film thickness sharply increases around a critical velocity V*, and then slowly 
decreases for Vmuch larger than V*. 

This diverging behaviour was shown to happen as the Weber number becomes of 
order 1. it is due to inertia and thus this was called visco-inertial regime. A dimensional 
form for the critical velocity V* was proposed and studied. At larger velocities 
( W >  l), the fibre entrains just the viscous boundary layer and the film thickness 
decreases as 1/V'I2. It does not depend any longer on the surface tension but is 
limited by the geometry of the reservoir since it is fixed by the length of the bath. 
Practically this boundary layer regime should be relevant to most industrial coating 
processes, where fibres are lubricated with aqueous solutions at a velocity of order 
10 to 100 m s-l. 

The special case of very long reservoirs was finally discussed. A third inertial effect 
was found : at high velocity, a new regime appears, where drops of liquids are regularly 
expelled from the bath. This instability of the meniscus was studied by taking into 
account the dynamic pressure exerted on it. A simple criterion for the appearance of 
the instability was proposed. 



236 A .  de Ryck and D. Que're' 

For all the effects, dimensional analysis was done in order to explain physically the 
observations. Scaling laws were obtained, emphasizing the parameters which control 
the phenomena and allowing us to propose a simple classification. Detailed calculations 
remain to be done to get fully quantitative agreement with the data. Also, we have 
restricted our studies to the case of Newtonian fluids. Effects related to non-Newtonian 
liquids are probably important in the industrial issue of lubrication. As an example, in 
a recent study of the withdrawal out of a polymer solution in the semi-dilute regime, 
we reported a large thickening effect due to the Weissenberg effect. More generally the 
studying of coating by complex liquids (emulsions, suspensions and so on) might be a 
rich field of research. 

It is a pleasure to thank P.G.  de Gennes, J.-M. di Meglio, P. Chartier, E. Dallies, 
A. Koulago, V. Shkadov and M. Velarde for discussions and encouragement. 
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